Categorical Geometry and the Mathematical Foun- Dations of Quantum Gravity
نویسنده
چکیده
We consider two related approaches to quantizing general relativity which involve replacing point set topology with category theory as the foundation for the theory. The ideas of categorical topology are introduced in a way we hope is physicist friendly.
منابع مشابه
Stability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملA Pointless Model for the Continuum as the Foun- Dation for Quantum Gravity
In this paper, we outline a new approach to quantum gravity; describing states for a bounded region of spacetime as eigenstates for two classes of physically plausible gedanken experiments. We end up with two complementary descriptions in which the point set continuum disappears. The first replaces the continuum of events with a handlebody decomposition of loop space. We conjecture that techniq...
متن کاملMonte Carlo simulations of 4d simplicial quantum gravity
Dynamical triangulations of four-dimensional Euclidean quantum gravity give rise to an interesting, numerically accessible model of quantum gravity. We give a simple introduction to the model and discuss two particularly important issues. One is that contrary to recent claims there is strong analytical and numerical evidence for the existence of an exponential bound that makes the partition fun...
متن کاملQuantum Gravity: a Mathematical Physics Perspective
1. Introduction The problem of quantum gravity is an old one and over the course of time several distinct lines of thought have evolved. However, for several decades, there was very little communication between the two main communities in this area: particle physicists and gravitation theorists. Indeed, there was a lack of agreement on even what the key problems are. By and large, particle phys...
متن کاملQuantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations
In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...
متن کامل